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In this correspondence, we present new results concerning the concept of stochastic
domination and apply them to obtain new results on uniform integrability and on the
strong law of large numbers for sequences of pairwise independent random variables.
Our result on the strong law of large numbers extends a result of Chen, Bai, and Sung
(2014). The sharpness of the results is illustrated by three examples.
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1. Introduction

Let I be a nonempty index set. In this note, we investigate the notion of a family of random variables {Xi, i ∈ I} being
stochastically dominated by a nonnegative random variable X . The usual definition of this notion is that

sup
i∈I

P(|Xi| > x) ≤ P(X > x), for all x ∈ R. (1.1)

If the Xi, i ∈ I are identically distributed, then (1.1) is of course satisfied with X = |Xi0 | for any i0 ∈ I . Many authors use
an apparently weaker definition of {Xi, i ∈ I} being stochastically dominated by a nonnegative random variable Y , namely
that

sup
i∈I

P(|Xi| > x) ≤ C1P(C2Y > x), for all x ∈ R (1.2)

for some constants C1, C2 ∈ (0, ∞). It will be shown in Theorem 2.4, inter alia, that (1.1) and (1.2) are indeed equivalent.
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A sequence of random variables {Xn, n ≥ 1} is said to be uniformly integrable if

i) supn≥1 E(|Xn|) < ∞

nd

ii) for all ε > 0, there exists δ > 0 such that for every event A with P(A) < δ,

sup
n≥1

E(|Xn|1(A)) < ε.

ere and thereafter, 1(A) denotes the indicator function for set A. It is easy to see that (i) and (ii) are independent
onditions in the sense that neither implies the other. Hu and Rosalsky (2011) showed that (ii) is indeed equivalent
o the apparently stronger condition

ii’) for all ε > 0, there exists δ > 0 such that for every sequence of events {An, n ≥ 1} with P(An) < δ, n ≥ 1,

sup
n≥1

E(|Xn|1(An)) < ε.

The uniform integrability criterion (see, e.g., p. 94 in Chow and Teicher (1997)) asserts that a sequence of random
variables {Xn, n ≥ 1} is uniformly integrable if and only if

lim
a→∞

sup
n≥1

E(|Xn|1(|Xn| > a)) = 0.

The following classical result of the renowned mathematician Charles de La Vallée Poussin (see, e.g., p. 19 in Meyer (1966))
provides another characterization of uniform integrability. We refer to it as the de La Vallée Poussin criterion for uniform
integrability: A sequence of random variables {Xn, n ≥ 1} is uniformly integrable if and only if there exists a convex
monotone function g defined on [0, ∞) with g(0) = 0 such that

lim
x→∞

g(x)
x

= ∞ and sup
n≥1

E(g(|Xn|)) < ∞.

The proof of the necessity half is far more difficult than that of the sufficiency half. On the other hand, the sufficiency half
provides a very useful method for establishing uniform integrability of a sequence of random variables. For the sufficiency
half, the condition that g is a convex monotone function defined on [0, ∞) with g(0) = 0 is not needed; it can be weakened
to the condition that g is a nonnegative measurable function defined on [0, ∞).

Alternative proofs of the de La Vallée Poussin criterion for uniform integrability were provided by Chong (1979), Klenke
(2014, p. 138), and Chandra (2015).

2. On stochastic domination and uniform integrability

For a family of random variables {Xi, i ∈ I}, the following theorem characterizes when the function

F (x) = 1 − sup
i∈I

P(|Xi| > x), x ∈ R

is the distribution function of a nonnegative random variable X such that {Xi, i ∈ I} is stochastically dominated by X .

Theorem 2.1. Let {Xi, i ∈ I} be a family of random variables, and let

F (x) = 1 − sup
i∈I

P(|Xi| > x), x ∈ R.

Then F is nondecreasing, right continuous and limx→−∞ F (x) = 0. Moreover, F is the distribution function of a nonnegative
random variable X if and only if

lim
x→∞

F (x) = 1.

In such a case, {Xi, i ∈ I} is stochastically dominated by X.

Proof. It is easy to see that F (·) is nondecreasing. Since P(|Xi| > x) = 1 for all i ∈ I and x < 0, we have limx→−∞ F (x) = 0.
Let G(x) = supi∈I P(|Xi| > x), x ∈ R. To show that F (·) is right continuous, we will show that G(·) is right continuous; that
is, we will show that

lim
x→a+

G(x) = G(a) for all a ∈ R.

Let ε > 0 and let a ∈ R. Since G(a) = supi∈I P(|Xi| > a), there exists i0 ∈ I such that

P(|X | > a) > G(a) − ε/2.
i0

2
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ince the function

x ↦→ P(|Xi0 | > x), x ∈ R

s nonincreasing and right continuous, there exists δ > 0 such that

−ε/2 < P(|Xi0 | > x) − P(|Xi0 | > a) ≤ 0 for all x such that 0 ≤ x − a < δ.

herefore, for x satisfying 0 ≤ x − a < δ, we have

G(x) + ε = sup
i∈I

P(|Xi| > x) + ε

≥ P(|Xi0 | > x) + ε

> P(|Xi0 | > a) + ε/2
> G(a)

and so |G(x) − G(a)| < ε. Thus limx→a+ G(x) = G(a).
Since F (·) is nondecreasing, right continuous and limx→−∞ F (x) = 0, it is the distribution function of a random variable

X if and only if limx→∞ F (x) = 1. From P(|Xi| > x) = 1 for all i ∈ I and x < 0, we have F (x) = 0 for all x < 0. Thus when
limx→∞ F (x) = 1, P(X > x) = 1 − F (x) = 1 for all x < 0 and so

P(X ≥ 0) = P

(
∞⋂
n=1

(X > −
1
n
)

)
= 1;

that is, X ≥ 0 almost surely (a.s.). By the definition of F , it is clear that {Xi, i ∈ I} is stochastically dominated by X . □

The following simple result is a direct consequence of Theorem 2.1.

Corollary 2.2. Let {Xi, 1 ≤ i ≤ n} be a finite family of random variables. Then {Xi, 1 ≤ i ≤ n} is stochastically dominated by
a nonnegative random variable X with distribution function

F (x) = 1 − sup
1≤i≤n

P(|Xi| > x), x ∈ R.

Before establishing the equivalence between the definitions of stochastic domination given in (1.1) and (1.2), we
present the following simple lemma. This lemma is similar to Theorem 2.12.3 (i) of Gut (2013, p. 76).

Lemma 2.3. Let g : [0, ∞) → [0, ∞) be a measurable function with g(0) = 0 which is bounded on [0, A] and differentiable
on [A, ∞) for some A ≥ 0. If ξ is a nonnegative random variable, then

E(g(ξ )) = E(g(ξ )1(ξ ≤ A)) + g(A) +

∫
∞

A
g ′(x)P(ξ > x)dx. (2.1)

Proof. Since g(0) = 0, we have

E(g(ξ )) = E(g(ξ )1(ξ ≤ A)) + g(A) + E (g(ξ )1(ξ > A) − g(A))
= E(g(ξ )1(ξ ≤ A)) + g(A) + E (g(ξ1(ξ > A)) − g(A))

= E(g(ξ )1(ξ ≤ A)) + g(A) + E
(∫ ξ1(ξ>A)

A
g ′(x)dx

)
= E(g(ξ )1(ξ ≤ A)) + g(A) + E

(∫
∞

A
g ′(x)1 (ξ1(ξ > A) > x) dx

)
= E(g(ξ )1(ξ ≤ A)) + g(A) +

∫
∞

A
g ′(x)P(ξ1(ξ > A) > x)dx (by Fubini’s theorem)

= E(g(ξ )1(ξ ≤ A)) + g(A) +

∫
∞

A
g ′(x)P(ξ > x)dx

proving (2.1). □

The next theorem establishes the equivalence between the definitions of stochastic domination given in (1.1) and (1.2).

Theorem 2.4. Let {Xi, i ∈ I} be a family of random variables. Then there exists a nonnegative random variable X satisfying
(1.1) if and only if there exist a nonnegative random variable Y and constants C1, C2 ∈ (0, ∞) satisfying (1.2). Moreover,

(i) if g : [0, ∞) → [0, ∞) is a measurable function with g(0) = 0 which is bounded on [0, A] and differentiable on [A, ∞)
for some A ≥ 0
3
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ii) if g : [0, ∞) → [0, ∞) is a continuous function which is eventually nondecreasing with limx→∞ g(x) = ∞,

then the condition E(g(C2Y )) < ∞ where Y is as in (1.2) implies that E(g(X)) < ∞ where X is as in (1.1).

Proof. The necessity half is immediate by taking Y = X and C1 = C2 = 1.
Conversely, assume that there exist a nonnegative random variable Y and constants C1, C2 ∈ (0, ∞) satisfying (1.2).

Then

lim
x→∞

sup
i∈I

P(|Xi| > x) ≤ C1 lim
x→∞

P(C2Y > x) = 0

and so by Theorem 2.1, there exists a nonnegative random variable X with distribution function

F (x) = 1 − sup
i∈I

P(|Xi| > x), x ∈ R.

Thus

sup
i∈I

P(|Xi| > x) = 1 − F (x) = P(X > x), x ∈ R (2.2)

thereby verifying (1.1).
Next, we prove (i). By (1.2) and (2.2),

P(X > x) = sup
i∈I

P(|Xi| > x) ≤ C1P(C2Y > x), x ∈ R. (2.3)

By Lemma 2.3 and (2.3), we have

E(g(X)) = E(g(X)1(X ≤ A)) + g(A) +

∫
∞

A
g ′(x)P(X > x)dx

≤ E(g(X)1(X ≤ A)) + g(A) + C1

∫
∞

A
g ′(x)P(C2Y > x)dx

≤ C + C1E(g(C2Y )),

where C is a finite positive constant. Thus the condition E(g(C2Y )) < ∞ implies that E(g(X)) < ∞ completing the proof
of (i).

We now prove (ii). Let A > 0 be such that g(A) > 0 and g is nondecreasing on [A, ∞). Let B = sup0≤x≤A g(x). Then
B < ∞ since g is continuous. Let

h(x) =

⎧⎨⎩
xg(A)
A

if 0 ≤ x < A

g(x) if x ≥ A

and

h−1(t) = inf{x ≥ 0 : h(x) ≥ t}, t ≥ 0.

ote that for all t ≥ 0 and x ≥ 0,

t ≤ h(x) if and only if h−1(t) ≤ x.

It is easy to see that (2.3) ensures that

P(X ≥ x) ≤ C P(C Y ≥ x), x ∈ R. (2.4)
1 2
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E(g(X)) =

∫
∞

0
P(g(X) ≥ x)dx

=

∫
∞

0
P(g(X) ≥ x, X < A)dx +

∫
∞

0
P(g(X) ≥ x, X ≥ A)dx

=

∫ B

0
P(g(X) ≥ x, X < A)dx +

∫
∞

0
P(h(X) ≥ x, X ≥ A)dx

≤ B +

∫
∞

0
P(X ≥ h−1(x))dx

≤ B +

∫
∞

0
C1P(C2Y ≥ h−1(x))dx (by (2.4))

= B +

∫
∞

0
C1P(h(C2Y ) ≥ x)dx

= B + C1E(h(C2Y ))
= B + C1E(h(C2Y )1(C2Y < A)) + C1E(h(C2Y )1(C2Y ≥ A))
≤ B + C1h(A) + C1E(g(C2Y )).

Thus the condition E(g(C2Y )) < ∞ implies that E(g(X)) < ∞ completing the proof of (ii). □

The next theorem generalizes Lemma 5.2.2 of Taylor (1978) and Lemma 3 of Wei and Taylor (1978) as well as the
stronger form pointed out by Adler et al. (1992). In Theorem 2.5, it is shown that bounded moment type conditions on a
family of random variables {Xi, i ∈ I} can accomplish stochastic domination.

Throughout the rest of the paper, for x ≥ 0, we let log(x) denote ln(max{e, x}) where ln is the natural logarithm.

Theorem 2.5. Let {Xi, i ∈ I} be a family of random variables.

(i) Let g : [0, ∞) → [0, ∞) be a nondecreasing function with limx→∞ g(x) = ∞. If

sup
i∈I

E(g(|Xi|)) < ∞, (2.5)

then there exists a nonnegative random variable X with distribution function F (x) = 1 − supi∈I P(|Xi| > x), x ∈ R such
that {Xi, i ∈ I} is stochastically dominated by X.

(ii) If

sup
i∈I

E(|Xi|
p) < ∞ for some p > 0, (2.6)

then there exists a nonnegative random variable X with distribution function F (x) = 1 − supi∈I P(|Xi| > x), x ∈ R such
that {Xi, i ∈ I} is stochastically dominated by X and

E
(
Xp log−1−ε(X)

)
< ∞ for all ε > 0. (2.7)

(iii) If

sup
i∈I

E(|Xi|
p log1+ε(|Xi|)) < ∞ for some p > 0 and for some ε > 0,

then there exists a nonnegative random variable X with distribution function F (x) = 1 − supi∈I P(|Xi| > x), x ∈ R such
that {Xi, i ∈ I} is stochastically dominated by X and

E
(
Xp) < ∞.

Proof. (i) By the monotonicity of g and the Markov inequality, we have for all large x

sup
i∈I

P(|Xi| > x) ≤
supi∈I E(g(|Xi|))

g(x)
.

Thus by (2.5) and limx→∞ g(x) = ∞, we have

lim
x→∞

supP(|Xi| > x) ≤ lim
x→∞

supi∈I E(g(|Xi|))
= 0.
i∈I g(x)

5
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hen by applying Theorem 2.1, we get that {Xi, i ∈ I} is stochastically dominated by a nonnegative random variable X
ith distribution function

F (x) = 1 − sup
i∈I

P(|Xi| > x), x ∈ R.

This completes the proof of (i).
(ii) It follows from (2.6) that (2.5) holds with g(x) = xp, x ≥ 0. Then by Part (i), {Xi, i ∈ I} is stochastically dominated

by a nonnegative random variable X with distribution function F (x) = 1 − supi∈I P(|Xi| > x), x ∈ R. Let ε > 0 and let

h(x) = xp log−1−ε(x), x ≥ 0.

Then, we have

h′(x) =
xp−1 logε(x) (p log(x) − (1 + ε))

log2+2ε(x)
≤ pxp−1 log−1−ε(x), x > e. (2.8)

By Lemma 2.3, (2.8), the Markov inequality, and (2.6), we have

E(h(X)) = E(h(X)1(X ≤ e)) + h(e) +

∫
∞

e
h′(x)P(X > x)dx

≤ 2ep +

∫
∞

e
pxp−1 log−1−ε(x)P(X > x)dx

= 2ep +

∫
∞

e
pxp−1 log−1−ε(x) sup

i∈I
P(|Xi| > x)dx

≤ 2ep +

∫
∞

e
px−1 log−1−ε(x) sup

i∈I
E(|Xi|

p)dx

= 2ep + p sup
i∈I

E(|Xi|
p)
∫

∞

e
x−1 log−1−ε(x)dx

< ∞.

The proof of (ii) is completed.
(iii) The proof is similar to that of (ii) and is left to the reader. □

It easily follows from Exercise 6.2.8 in Chow and Teicher (1997, p. 183) that if a sequence of random variables
{Xn, n ≥ 1} is stochastically dominated by a nonnegative random variable X with E(Xp) < ∞ for some p > 0, then
{|Xn|

p, n ≥ 1} is uniformly integrable. The next theorem is a partial converse of this result. We note that (2.9) is the
necessary and sufficient condition for the Marcinkiewicz–Zygmund type weak law of large numbers when 0 < p ≤ 1
for sequences of independent and identically distributed random variables {X, Xn, n ≥ 1} (see, e.g., condition (4.2) of
Theorem 6.4.2 in Gut (2013, p. 281)). When 1 ≤ p < 2, (2.9) is the sufficient condition for a Marcinkiewicz–Zygmund
type weak law of large numbers for double arrays of independent random variables which are stochastically dominated
by a nonnegative random variable X (see Theorem 3.2 in Rosalsky and Thanh (2009)).

Theorem 2.6. Let p > 0 and let {Xn, n ≥ 1} be a sequence of random variables. If {|Xn|
p, n ≥ 1} is uniformly integrable,

then there exists a nonnegative random variable X with distribution function F (x) = 1 − supn≥1 P(|Xn| > x), x ∈ R such that
{Xn, n ≥ 1} is stochastically dominated by X,

lim
n→∞

nP
(
X > n1/p)

= 0, (2.9)

and

E
(
Xp log−1−ε(X)

)
< ∞ for all ε > 0. (2.10)

Proof. By the de La Vallée Poussin criterion for uniform integrability, there exists a nondecreasing function g defined on
[0, ∞) with g(0) = 0 such that

lim
x→∞

g(x)
x

= ∞, (2.11)

nd

sup
i≥1

E(g(|Xi|
p)) < ∞. (2.12)

ow by Theorem 2.5 (i), (2.12) implies that {Xn, n ≥ 1} is stochastically dominated by a nonnegative random variable X
ith distribution function

F (x) = 1 − supP(|Xi| > x), x ∈ R.

i≥1

6
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e thus have by the Markov inequality that

lim
n→∞

nP
(
X > n1/p)

= lim
n→∞

n sup
i≥1

P(|Xi|
p > n)

≤ lim
n→∞

n sup
i≥1

P(g(|Xi|
p) ≥ g(n))

≤ lim
n→∞

n sup
i≥1

E(g(|Xi|
p))

g(n)

= sup
i≥1

E(g(|Xi|
p)) lim

n→∞

n
g(n)

= 0

by (2.11) and (2.12) thereby proving (2.9).
Finally, the uniform integrability hypothesis ensures that (2.6) holds and so (2.10) follows from Theorem 2.5 (ii). □

3. An application of Theorem 2.5 to the strong law of large numbers for pairwise independent random variables

In this section, we present two strong laws of large numbers (SLLNs). They are a consequence of Theorem 2.5 and the
following proposition which is proved along the lines of Theorem 1 of Thành (2020).

Proposition 3.1. Let 1 ≤ p < 2 and let {Xn, n ≥ 1} be a sequence of pairwise independent random variables which is
stochastically dominated by a nonnegative random variable X satisfying

E
(
Xp logγ (X)

)
< ∞ for some γ ∈ R.

If p = 1, assume that γ ≥ 0. Then for all α ≥ 1/p, we have
∞∑
n=1

nαp−2P

(
max
1≤k≤n

⏐⏐⏐⏐⏐
k∑

i=1

(Xi − E(Xi))

⏐⏐⏐⏐⏐ > εnα log−γ (n)

)
< ∞ for all ε > 0

and, a fortiori, the SLLN

lim
n→∞

∑n
i=1(Xi − E(Xi))
n1/p log−γ (n)

= 0 a.s.

is obtained.

In Theorem 3.6 of Chen et al. (2014), it is proved that if {Xn, n ≥ 1} is a sequence of pairwise independent and identically
distributed random variables with E(X1) = 0 and E(|X1|

p logγ (|X1|)) < ∞ for some 1 < p < 2 and for some p < γ < 2,
then

∞∑
n=1

n−1P

(
max
1≤k≤n

⏐⏐⏐⏐⏐
k∑

i=1

Xi

⏐⏐⏐⏐⏐ > εn1/p

)
< ∞ for all ε > 0.

Therefore, both Proposition 3.1 and the following theorem are stronger results than Theorem 3.6 of Chen et al. (2014).

Theorem 3.2. Let 1 ≤ p < 2, and let {Xn, n ≥ 1} be a sequence of pairwise independent random variables satisfying

sup
n≥1

E
(
|Xn|

p logγ (|Xn|)
)

< ∞ for some γ > 1. (3.1)

Then for all α ≥ 1/p, we have
∞∑
n=1

nαp−2P

(
max
1≤k≤n

⏐⏐⏐⏐⏐
k∑

i=1

(Xi − E(Xi))

⏐⏐⏐⏐⏐ > εnα

)
< ∞ for all ε > 0

and, a fortiori, the SLLN

lim
n→∞

∑n
i=1(Xi − E(Xi))

n1/p = 0 a.s. (3.2)

s obtained.

roof. By Part (iii) of Theorem 2.5 and (3.1), there exists a nonnegative random variable X with E(Xp) < ∞ such that
{Xn, n ≥ 1} is stochastically dominated by X . Theorem 3.2 then follows from Proposition 3.1. □

Similarly, by Part (ii) of Theorem 2.5 and Proposition 3.1, we have the following SLLN.
7
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heorem 3.3. Let 1 < p < 2, and let {Xn, n ≥ 1} be a sequence of pairwise independent random variables satisfying

sup
n≥1

E
(
|Xn|

p) < ∞.

hen for all α ≥ 1/p and for all γ > 1, we have
∞∑
n=1

nαp−2P

(
max
1≤k≤n

⏐⏐⏐⏐⏐
k∑

i=1

(Xi − E(Xi))

⏐⏐⏐⏐⏐ > εnα logγ (n)

)
< ∞ for all ε > 0

nd, a fortiori, the SLLN

lim
n→∞

∑n
i=1(Xi − E(Xi))
n1/p logγ (n)

= 0 a.s.

s obtained.

. Three interesting examples

In this section, we will present three interesting examples to illustrate the sharpness of the results. The first example
hows that, in Part (ii) of Theorem 2.5, (2.7) cannot be strengthened to

E(Xp log−1(X)) < ∞. (4.1)

t also shows that the assumption {|Xn|
p, n ≥ 1} being uniformly integrable in Theorem 2.6 cannot be weakened to

upn≥1 E(|Xn|
p) < ∞.

xample 4.1. Let p > 0 and {Xn, n ≥ 1} be a sequence of random variables such that

P(Xn = 0) = 1 −
1
n
, P(Xn = n1/p) =

1
n
, n ≥ 1.

Then supn≥1 E(|Xn|
p) = 1 and so (2.6) holds. By Part (ii) of Theorem 2.5, {Xn, n ≥ 1} is stochastically dominated by a

nonnegative random variable X with distribution function F (x) = 1 − supn≥1 P(Xn > x), x ∈ R, and (2.7) holds.
We will now show that (4.1) fails. For x ∈ R, let ⌈x⌉ be the smallest integer that is greater than x. Then

P(X > x) =

⎧⎨⎩1 if x < 1,
1

⌈xp⌉
if x ≥ 1.

(4.2)

et g(x) = xp log−1(x), x ≥ 0. Then

g ′(x) = pxp−1 log−1(x) − xp−1 log−2(x) = xp−1 log−1(x)(p − log−1(x)) > pxp−1 log−1(x)/2

for all large x. By Lemma 2.3 and (4.2), for all A large enough, we have

E(Xp log−1(X)) ≥
p
2

∫
∞

A
xp−1 log−1(x)P(X > x)dx

=
p
2

∫
∞

A

xp−1 log−1(x)
⌈xp⌉

dx

= ∞

and so (4.1) fails. Now, for all a > 0,

sup
n≥1

E(|Xn|
p1(|Xn| > a)) = 1.

Therefore, lima→∞ supn≥1 E(|Xn|
p1(|Xn > a)) = 1 and so {|Xn|

p, n ≥ 1} is not uniformly integrable. We also have from
(4.2) that

lim
n→∞

nP(X > n1/p) = lim
n→∞

n
n + 1

= 1,

nd thus (2.9) fails.

The second example shows that in Theorem 2.6, (2.10) cannot be strengthened to (4.1).

xample 4.2. Let {Xn, n ≥ 1} be a sequence of random variables such that

P(Xn = 0) = 1 −
1
, P

(
Xn = n (log (log(n)))−1)

=
1
, n ≥ 1.
n n
8
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T
T
a

a

P

T

S
t

H

c

D

a

A

s

hen supn≥1 E(|Xn| log(log(|Xn|))) < ∞ and so {Xn, n ≥ 1} is uniformly integrable by the de La Vallée Poussin criterion.
he hypotheses of Theorem 2.6 are satisfied with p = 1. Then by Theorem 2.6, {Xn, n ≥ 1} is stochastically dominated by
nonnegative random variable X with distribution function F (x) = 1 − supn≥1 P(Xn > x), x ∈ R. Then

P(X > x) =

⎧⎨⎩1 if x < 1,
1
αx

if x ≥ 1,

where for x ≥ 1, αx is the smallest integer n such that n (log (log(n)))−1 > x. Then for x ≥ 1,

αx (log (log(αx)))−1 > x ≥ (αx − 1) (log (log(αx − 1)))−1 (4.3)

nd it follows from (4.3) that

αx ∼ x log(log(x)) as x → ∞.

roceeding as in Example 4.1, for all A large enough, we have

E(X log−1(X)) ≥
1
2

∫
∞

A
log−1(x)P(X > x)dx

=
1
2

∫
∞

A

log−1(x)
αx

dx

≥
1
4

∫
∞

A

1
x(log(x)) log(log(x))

dx

= ∞

and so (4.1) fails.

The third example illustrates the sharpness of Theorem 3.2. If 1 ≤ p < 2 and {Xn, n ≥ 1} is a sequence of pairwise
independent and identically distributed integrable random variables, then the necessary and sufficient condition for the
SLLN (3.2) is E(|X1|

p) < ∞ (see Corollary 2 in Thành (2020)). However, the following example shows that in Theorem 3.2,
the SLLN (3.2) may fail if (3.1) is weakened to

sup
n≥1

E
(
|Xn|

p log(|Xn|)
)

< ∞. (4.4)

Example 4.3. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of independent random variables such that

P(Xn = 0) = 1 −
1

(n + 1) log(n + 1)
, P

(
Xn = ±(n + 1)1/p

)
=

1
2(n + 1) log(n + 1)

, n ≥ 1.

hen supn≥1 E(|Xn|
p logγ (|Xn|)) = ∞ for all γ > 1 but supn≥1 E(|Xn|

p log(|Xn|)) = 1/p and so (3.1) fails but (4.4) holds.
Now if the SLLN (3.2) holds, then

lim
n→∞

Xn

n1/p = 0 a.s. (4.5)

ince the sequence {Xn, n ≥ 1} is comprised of independent random variables, the Borel–Cantelli lemma and (4.5) ensure
hat

∞∑
n=1

P(|Xn| > n1/p) < ∞. (4.6)

owever, we have
∞∑
n=1

P(|Xn| > n1/p) =

∞∑
n=1

1
(n + 1) log(n + 1)

= ∞

ontradicting (4.6). Therefore, the SLLN (3.2) must fail.
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